5 research outputs found

    ANALYSIS AND DESIGN OF ANTENNA PROBES FOR DETECTION / IMAGING APPLICATIONS

    Get PDF
    Analysis and Design of Antenna Probes for Detection / Imaging Applications Ayman Elboushi, Ph.D. Concordia University. As a result of increasing international terrorist threats, the need for an efficient inspecting tool has become urgent. Not only for seeing through wall applications, but also to be employed as a safe human body scanner at public places such as airports and borders. The usage of microwave and millimeter wave antennas and systems for detection / imaging applications is currently of increasing research interest targeting the enhancement of different security systems. There are many challenges facing researchers in order to develop such systems. One of the challenges is the proper design of a low cost, reduced size and efficient antenna probe to work as a scanning sensor. In this thesis, two different technology choices of antenna probes for the feasibility of constructing detection / imaging systems are investigated. The first one covers the Ultra Wide Band (UWB) range (3.1 GHz to 10.6 GHz), while the second operates over the Millimeter-Wave (MMW) range. In addition to the development of several antenna probes, two detection / imaging systems are demonstrated and showed reasonably accurate detection results. Three different UWB monopole antenna prototypes, with different radiator shapes (circular, crescent and elliptical) have been introduced. These antennas are designed using a standard printed circuit board (PCB) process to work as probing sensors in a proposed UWB detection / imaging system. In order to enhance the resolution and the detection accuracy of the probe, 4-element Balanced Antipodal Vivaldi Antenna (BAVA) array fed by 1-to-4 UWB modified Wilkinson power divider has been developed. Some successful experiments have been conducted using the proposed UWB detection / imaging system combined with the fabricated antenna probes to detect the presence of a gap between two walls made of different material types, to evaluate the gap width and to estimate the size and exact location of a hidden target between the walls. The second research theme of this thesis is to develop small-sized, light-weight and high gain MMW scanning antenna probes. For the realization of such probes, several gain enhancement techniques have been adopted, including hybridization and a multi-element array principle. Several high-gain hybrid antennas have been designed, fabricated and tested. For demonstration purposes, experiments have been carried out for detecting and imaging a small metallic coin under the jeans layer of a three-layer target emulating a human body’s covering layers. A performance comparison between a standard metallic MMW horn and hybrid microstrip patch/conical horn antenna has been made. The proposed reduced size antenna sensor shows increased efficiency compared with the bulky horn antenna. Resolution enhancement of the reconstructed image of the hidden target is implemented using a new triple-antenna MMW sensor. The triple-antenna sensor consists of three adjacent microstrip patch / conical horn antennas separated by 1.5 wavelengths at the center frequency for coupling reduction between these elements. The middle element of the sensor is used for monitoring the time domain back-reflected signal from the target under inspection, while the side elements are used for monitoring the scattered signals. By the aid of a special signal processing algorithm, an enhanced image of the concealed object can be obtained by combining the three readings of each point in the area under study. The proposed system shows a great ability for detecting a hidden target and enhances the reconstructed image resolution

    High-gain annular ring with meander slots antenna array for RFID applications

    No full text
    Abstract In this paper, a high-gain annular ring with meander slots antenna array is presented. The proposed design is realized on two different substrate materials separated by a foam layer of 7.5 mm to enhance the operating bandwidth. The antenna is designed to operated as UHF-RFID reading antenna over center frequency of 915 MHz with operating bandwidth of 49.25 MHz (around 5.38%). The overall antenna optimized dimensions are 240×240×11.56 mm3. An overall total realized gain of 12.5 dBi is achieved at the intended center frequency. The proposed antenna exhibits stable radiation capabilities over the operating band. Good agreement is obtained between both CSTMWS, and HFSS simulators
    corecore